o(╥﹏╥)o伤心

微信无法下载matlab小波变换程序,不过只要点击右上角选择在浏览器或Safari中打开就可以啦!
matlab小波变换程序

matlab小波变换程序

  • 大小:0.46M
  • 语言:简体中文
  • 类别: 编程控件
  • 系统:Win All

为您推荐: MATLAB

matlab小波变换程序是关于信号处理中的小波变换分析,用matlab命令实现的

MATLAB2维小波变换经典程序

% FWT_DB.M;
% 此示意程序用DWT实现二维小波变换
% 编程时间2004-4-10,编程人沙威
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%
clear;clc;
T=256; % 图像维数
SUB_T=T/2; % 子图维数
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 1.调原始图像矩阵
load wbarb; % 下载图像
f=X; % 原始图像
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 2.进行二维小波分解
l=wfilters('db10','l'); % db10(消失矩为10)低通分解滤波器冲击响应(长度为20)
L=T-length(l);
l_zeros=[l,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂
h=wfilters('db10','h'); % db10(消失矩为10)高通分解滤波器冲击响应(长度为20)
h_zeros=[h,zeros(1,L)]; % 矩阵行数与输入图像一致,为2的整数幂
for i=1:T; % 列变换
row(1:SUB_T,i)=dyaddown( ifft( fft(l_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积<->FFT
row(SUB_T+1:T,i)=dyaddown( ifft( fft(h_zeros).*fft(f(:,i)') ) ).'; % 圆周卷积<->FFT
end;
for j=1:T; % 行变换
line(j,1:SUB_T)=dyaddown( ifft( fft(l_zeros).*fft(row(j,:)) ) ); % 圆周卷积<->FFT
line(j,SUB_T+1:T)=dyaddown( ifft( fft(h_zeros).*fft(row(j,:)) ) ); % 圆周卷积<->FFT
end;
decompose_pic=line; % 分解矩阵
% 图像分为四块
lt_pic=decompose_pic(1:SUB_T,1:SUB_T); % 在矩阵左上方为低频分量--fi(x)*fi(y)
rt_pic=decompose_pic(1:SUB_T,SUB_T+1:T); % 矩阵右上为--fi(x)*psi(y)
lb_pic=decompose_pic(SUB_T+1:T,1:SUB_T); % 矩阵左下为--psi(x)*fi(y)
rb_pic=decompose_pic(SUB_T+1:T,SUB_T+1:T); % 右下方为高频分量--psi(x)*psi(y)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 3.分解结果显示
figure(1);
colormap(map);
subplot(2,1,1);
image(f); % 原始图像
title('original pic');
subplot(2,1,2);
image(abs(decompose_pic)); % 分解后图像
title('decomposed pic');
figure(2);
colormap(map);
subplot(2,2,1);
image(abs(lt_pic)); % 左上方为低频分量--fi(x)*fi(y)
title('Phi(x)*Phi(y)');
subplot(2,2,2);
image(abs(rt_pic)); % 矩阵右上为--fi(x)*psi(y)
title('Phi(x)*Psi(y)');
subplot(2,2,3);
image(abs(lb_pic)); % 矩阵左下为--psi(x)*fi(y)
title('Psi(x)*Phi(y)');
subplot(2,2,4);
image(abs(rb_pic)); % 右下方为高频分量--psi(x)*psi(y)
title('Psi(x)*Psi(y)');


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 5.重构源图像及结果显示
% construct_pic=decompose_matrix'*decompose_pic*decompose_matrix;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
l_re=l_zeros(end:-1:1); % 重构低通滤波
l_r=circshift(l_re',1)'; % 位置调整
h_re=h_zeros(end:-1:1); % 重构高通滤波
h_r=circshift(h_re',1)'; % 位置调整

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
top_pic=[lt_pic,rt_pic]; % 图像上半部分
t=0;
for i=1:T; % 行插值低频

if (mod(i,2)==0)
topll(i,:)=top_pic(t,:); % 偶数行保持
else
t=t+1;
topll(i,:)=zeros(1,T); % 奇数行为零
end
end;
for i=1:T; % 列变换
topcl_re(:,i)=ifft( fft(l_r).*fft(topll(:,i)') )'; % 圆周卷积<->FFT
end;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
bottom_pic=[lb_pic,rb_pic]; % 图像下半部分
t=0;
for i=1:T; % 行插值高频
if (mod(i,2)==0)
bottomlh(i,:)=bottom_pic(t,:); % 偶数行保持
else
bottomlh(i,:)=zeros(1,T); % 奇数行为零
t=t+1;
end
end;
for i=1:T; % 列变换
bottomch_re(:,i)=ifft( fft(h_r).*fft(bottomlh(:,i)') )'; % 圆周卷积<->FFT
end;

construct1=bottomch_re+topcl_re; % 列变换重构完毕

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
left_pic=construct1(:,1:SUB_T); % 图像左半部分
t=0;
for i=1:T; % 列插值低频

if (mod(i,2)==0)
leftll(:,i)=left_pic(:,t); % 偶数列保持
else
t=t+1;
leftll(:,i)=zeros(T,1); % 奇数列为零
end
end;
for i=1:T; % 行变换
leftcl_re(i,:)=ifft( fft(l_r).*fft(leftll(i,:)) ); % 圆周卷积<->FFT
end;


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
right_pic=construct1(:,SUB_T+1:T); % 图像右半部分

t=0;
for i=1:T; % 列插值高频
if (mod(i,2)==0)
rightlh(:,i)=right_pic(:,t); % 偶数列保持
else
rightlh(:,i)=zeros(T,1); % 奇数列为零
t=t+1;
end
end;
for i=1:T; % 行变换
rightch_re(i,:)=ifft( fft(h_r).*fft(rightlh(i,:)) ); % 圆周卷积<->FFT
end;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
construct_pic=rightch_re+leftcl_re; % 重建全部图像
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% 结果显示
figure(3);
colormap(map);
subplot(2,1,1);
image(f); % 源图像显示
title('original pic');
subplot(2,1,2);
image(abs(construct_pic)); % 重构源图像显示
title('reconstructed pic');
error=abs(construct_pic-f); % 重构图形与原始图像误值
figure(4);
mesh(error); % 误差三维图像
title('absolute error display');




clear
clc
%在噪声环境下语音信号的增强
%语音信号为读入的声音文件
%噪声为正态随机噪声
sound=wavread('c12345.wav');
count1=length(sound);
noise=0.05*randn(1,count1);
for i=1:count1
signal(i)=sound(i);
end
for i=1:count1
y(i)=signal(i)+noise(i);
end

%在小波基'db3'下进行一维离散小波变换
[coefs1,coefs2]=dwt(y,'db3'); %[低频 高频]

count2=length(coefs1);
count3=length(coefs2);

energy1=sum((abs(coefs1)).^2);
energy2=sum((abs(coefs2)).^2);
energy3=energy1+energy2;

for i=1:count2
recoefs1(i)=coefs1(i)/energy3;
end
for i=1:count3
recoefs2(i)=coefs2(i)/energy3;
end

%低频系数进行语音信号清浊音的判别
zhen=160;
count4=fix(count2/zhen);
for i=1:count4
n=160*(i-1)+1:160+160*(i-1);
s=sound(n);
w=hamming(160);
sw=s.*w;
a=aryule(sw,10);
sw=filter(a,1,sw);
sw=sw/sum(sw);
r=xcorr(sw,'biased');
corr=max(r);
%为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0
if corr>=0.8
output1(i)=0;
elseif corr<=0.1
output1(i)=1;
end
end
for i=1:count4
n=160*(i-1)+1:160+160*(i-1);
if output1(i)==1
switch abs(recoefs1(i))
case abs(recoefs1(i))<=0.002
recoefs1(i)=0;
case abs(recoefs1(i))>0.002 & abs(recoefs1(i))<=0.003
recoefs1(i)=sgn(recoefs1(i))*(0.003*abs(recoefs1(i))-0.000003)/0.002;
otherwise recoefs1(i)=recoefs1(i);
end
elseif output1(i)==0
recoefs1(i)=recoefs1(i);
end
end

%对高频系数进行语音信号清浊音的判别
count5=fix(count3/zhen);
for i=1:count5
n=160*(i-1)+1:160+160*(i-1);
s=sound(n);
w=hamming(160);
sw=s.*w;
a=aryule(sw,10);
sw=filter(a,1,sw);
sw=sw/sum(sw);
r=xcorr(sw,'biased');
corr=max(r);
%为清音(unvoice)时,输出为1;为浊音(voice)时,输出为0
if corr>=0.8
output2(i)=0;
elseif corr<=0.1
output2(i)=1;
end
end
for i=1:count5
n=160*(i-1)+1:160+160*(i-1);
if output2(i)==1
switch abs(recoefs2(i))
case abs(recoefs2(i))<=0.002
recoefs2(i)=0;
case abs(recoefs2(i))>0.002 & abs(recoefs2(i))<=0.003
recoefs2(i)=sgn(recoefs2(i))*(0.003*abs(recoefs2(i))-0.000003)/0.002;
otherwise recoefs2(i)=recoefs2(i);
end
elseif output2(i)==0
recoefs2(i)=recoefs2(i);
end
end
%在小波基'db3'下进行一维离散小波反变换
output3=idwt(recoefs1, recoefs2,'db3');
%对输出信号抽样点值进行归一化处理
maxdata=max(output3);
output4=output3/maxdata;
%读出带噪语音信号,存为'101.wav'
wavwrite(y,5500,16,'c101');
%读出处理后语音信号,存为'102.wav'
wavwrite(output4,5500,16,'c102');



function [I_W , S] = func_DWT(I, level, Lo_D, Hi_D);
%通过这个函数将I进行小波分解,并将分解后的一维向量转换为矩阵形式
% Matlab implementation of SPIHT (without Arithmatic coding stage)
% Wavelet decomposition
% input: I : input image
% level : wavelet decomposition level
% Lo_D : low-pass decomposition filter
% Hi_D : high-pass decomposition filter
% output: I_W : decomposed image vector
% S : corresponding bookkeeping matrix
% please refer wavedec2 function to see more
[C,S] = func_Mywavedec2(I,level,Lo_D,Hi_D);

S(:,3) = S(:,1).*S(:,2); % dim of detail coef nmatrices 求低频和每个尺度中高频的元素个数
%st=S(1,3)+S(2,3)*3+S(3,3)*3;%%%%对前两层加密
%C(1:st)=0;

L = length(S); %a求S的列数

I_W = zeros(S(L,1),S(L,2));%设一个与原图像大小相同的全零矩阵

% approx part
I_W( 1:S(1,1) , 1:S(1,2) ) = reshape(C(1:S(1,3)),S(1,1:2)); %将LL层从C中还原为S(1,1)*S(1,2)的矩阵

for k = 2 : L-1 %将C向量中还原出HL,HH,LH 矩阵
rows = [sum(S(1:k-1,1))+1:sum(S(1:k,1))];
columns = [sum(S(1:k-1,2))+1:sum(S(1:k,2))];
% horizontal part
c_start = S(1,3) + 3*sum(S(2:k-1,3)) + 1;
c_stop = S(1,3) + 3*sum(S(2:k-1,3)) + S(k,3);
I_W( 1:S(k,1) , columns ) = reshape( C(c_start:c_stop) , S(k,1:2) );

% vertical part
c_start = S(1,3) + 3*sum(S(2:k-1,3)) + S(k,3) + 1;
c_stop = S(1,3) + 3*sum(S(2:k-1,3)) + 2*S(k,3);
I_W( rows , 1:S(k,2) ) = reshape( C(c_start:c_stop) , S(k,1:2) );

% diagonal part
c_start = S(1,3) + 3*sum(S(2:k-1,3)) + 2*S(k,3) + 1;
c_stop = S(1,3) + 3*sum(S(2:k,3));
I_W( rows , columns ) = reshape( C(c_start:c_stop) , S(k,1:2) );

end

%%%%%%%mallat algorithm%%%%% clc; clear;tic; %%%%original signal%%%% f=100;%%frequence ts=1/800;%%抽样间隔 N=1:100;%%点数 s=sin(2*ts*pi*f.*N);%%源信号 figure(1) plot(s);%%%源信号s title('原信号'); grid on; %%%%小波滤波器%%%% ld=wfilters('db1','l');%%低通 hd=wfilters('db1','h');%%高通 figure(2) stem(ld,'r');%%%低通 grid on; figure(3) stem(hd,'b')%%%高通 grid on; %%%%% tem=conv(s,ld);%%低通和原信号卷积 ca1=dyaddown(tem);%%抽样 figure(4) plot(ca1); grid on; tem=conv(s,hd);%%高通和原信号卷积 cb1=dyaddown(tem);%%抽样 figure(5) plot(cb1); grid on; %%%%%%%% %[ca3,cb3]=dwt(s,'db1');%%小波变换 %%%%%%%% [lr,hr]=wfilters('db1','r');%%重构滤波器 figure(6) stem(lr); figure(7) stem(hr); tem=dyadup(cb1);%%插值 tem=conv(tem,hr);%%卷积 d1=wkeep(tem,100);%%去掉两头的分量 %%%%%%%%% tem=dyadup(ca1);%%插值 tem=conv(tem,lr);%%卷积 a1=wkeep(tem,100);%%去掉两头的分量 a=a1+d1;%%%重构原信号 %%%%%%%%% %a3=idwt(ca3,cb3,'db1',100);%%%小波逆变换 %%%%%%%%% figure(8) plot(a,'.b'); hold on; plot(s,'r'); grid on; title('重构信号和原信号的比较');toc; %figure(9) %plot(a3,'.b'); %hold on; %plot(s,'r'); %grid on; %title('重构信号和原信号的比较');
通用函数

 

 Allnodes   计算树结点  
appcoef   提取一维小波变换低频系数  
appcoef2   提取二维小波分解低频系数  
bestlevt   计算完整最佳小波包树  
besttree   计算最佳(优)树  
*  biorfilt   双正交样条小波滤波器组  
biorwavf   双正交样条小波滤波器  
*  centfrq   求小波中心频率  
cgauwavf   Complex Gaussian小波  
cmorwavf   coiflets小波滤波器  
cwt   一维连续小波变换  
dbaux   Daubechies小波滤波器计算  
dbwavf   Daubechies小波滤波器   dbwavf(W)    W='dbN'   N=1,2,3,...,50  
ddencmp   获取默认值阈值(软或硬)熵标准  
depo2ind   将深度-位置结点形式转化成索引结点形式  
detcoef   提取一维小波变换高频系数  
detcoef2   提取二维小波分解高频系数  
disp   显示文本或矩阵  
drawtree   画小波包分解树(GUI)  
dtree   构造DTREE类  
dwt   单尺度一维离散小波变换  
dwt2   单尺度二维离散小波变换  
dwtmode   离散小波变换拓展模式  
*  dyaddown   二元取样  
*  dyadup   二元插值  
entrupd   更新小波包的熵值  
fbspwavf   B样条小波  
gauswavf   Gaussian小波  
get   获取对象属性值  
idwt   单尺度一维离散小波逆变换  
idwt2   单尺度二维离散小波逆变换  
ind2depo   将索引结点形式转化成深度—位置结点形式  
*  intwave   积分小波数  
isnode   判断结点是否存在   
istnode   判断结点是否是终结点并返回排列值  
iswt   一维逆SWT(Stationary Wavelet Transform)变换  
iswt2   二维逆SWT变换  
leaves     Determine terminal nodes
mexihat   墨西哥帽小波  meyer   Meyer小波  
meyeraux   Meyer小波辅助函数  morlet   Morlet小波  
nodease   计算上溯结点  
nodedesc   计算下溯结点(子结点)  
nodejoin   重组结点  nodepar   寻找父结点  
nodesplt   分割(分解)结点  
noleaves     Determine nonterminal nodes
ntnode     Number of terminal nodes
ntree     Constructor for the class NTREE 
*  orthfilt   正交小波滤波器组  
plot   绘制向量或矩阵的图形  
*  qmf   镜像二次滤波器  
rbiowavf     Reverse biorthogonal spline wavelet filters
read   读取二进制数据  readtree   读取小波包分解树  
*  scal2frq     Scale to frequency
set     
shanwavf     Shannon wavelets
swt   一维SWT(Stationary Wavelet Transform)变换  
swt2   二维SWT变换  
symaux     Symlet wavelet filter computation.
symwavf   Symlets小波滤波器  
thselect   信号消噪的阈值选择  
thodes     References
treedpth   求树的深度  
treeord   求树结构的叉数   
upcoef   一维小波分解系数的直接重构  upcoef2   二维小波分解系数的直接重构  
upwlev   单尺度一维小波分解的重构  upwlev2   单尺度二维小波分解的重构  
wavedec   单尺度一维小波分解  wavedec2   多尺度二维小波分解  
wavedemo   小波工具箱函数demo  
* wavefun   小波函数和尺度函数  *  wavefun2   二维小波函数和尺度函数  
wavemenu   小波工具箱函数menu图形界面调用函数  
*  wavemngr   小波管理函数  
waverec   多尺度一维小波重构  waverec2   多尺度二维小波重构  
wbmpen     Penalized threshold for wavelet 1-D or 2-D de-noising
wcodemat   对矩阵进行量化编码  
wdcbm     Thresholds for wavelet 1-D using Birge-Massart strategy
wdcbm2    Thresholds for wavelet 2-D using Birge-Massart strategy 
wden   用小波进行一维信号的消噪或压缩  
wdencmp    De-noising or compression using wavelets 
wentropy   计算小波包的熵  
wextend    Extend a vector or a matrix 
*  wfilters   小波滤波器  
wkeep   提取向量或矩阵中的一部分  
*  wmaxlev   计算小波分解的最大尺度  
wnoise   产生含噪声的测试函数数据  
wnoisest   估计一维小波的系数的标准偏差  
wp2wtree   从小波包树中提取小波树      
wpcoef   计算小波包系数  
wpcutree   剪切小波包分解树  
wpdec   一维小波包的分解  wpdec2   二维小波包的分解  
wpdencmp   用小波包进行信号的消噪或压缩  
wpfun   小波包函数  
wpjoin    重组小波包 
wprcoef   小波包分解系数的重构  
wprec   一维小波包分解的重构  wprec2   二维小波包分解的重构  
wpsplt   分割(分解)小波包  
wpthcoef   进行小波包分解系数的阈值处理  
wptree     显示小波包树结构
wpviewcf     Plot the colored wavelet packet coefficients. 
wrcoef   对一维小波系数进行单支重构  
wrcoef2   对二维小波系数进行单支重构  
wrev   向量逆序  
write   向缓冲区内存写进数据  
wtbo     Constructor for the class WTBO 
wthcoef   一维信号的小波系数阈值处理  
wthcoef2   二维信号的小波系数阈值处理  
wthresh   进行软阈值或硬阈值处理  
wthrmngr   阈值设置管理  
wtreemgr   管理树结构

 

版本: PC版 | 更新时间: 2024-11-01

同类推荐

最新更新

matlab小波变换程序评论

  • 1楼 华军网友 2022-02-19 14:31:53
    matlab小波变换程序很好用,谢谢啦!!
  • 2楼 华军网友 2019-10-31 22:50:41
    matlab小波变换程序界面设计很容易上手,功能很丰富,本人极力推荐!
  • 3楼 华军网友 2021-05-18 01:17:59
    matlab小波变换程序软件非常好用,下载速度很快,很方便!

精品推荐

大家还喜欢这些:

+

该应用未通过实名认证,您可通过手机助手下载。

取消好的